Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.480
Filtrar
1.
Huan Jing Ke Xue ; 45(5): 2694-2706, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629533

RESUMO

Eutrophication and harmful algae blooms are one of the common ecological and environmental problems faced by freshwater lakes all over the world. As a typical inland freshwater lake, Chaohu Lake exhibits a high level of eutrophication and algae blooms year-round and shows a spatiotemporal difference in different regions of the lake. In order to understand the basic regularity of the development and outbreak of algal blooms in Chaohu Lake, the data from the comprehensive water observation platform and remote sensing were integrated to obtain the spatiotemporal distribution of algal blooms from 2015 to 2020. Then, an evaluation model based on Boosted Regression Trees (BRT) was constructed to quantitatively assess the importance and interactions of various environmental factors on algal blooms at different stages. The results indicated that:① The occurrence of algal blooms in Chaohu Lake exhibited significant seasonal variations, with the cyanobacteria beginning to recover in spring and bring about a light degree of algal blooms in the western and coastal areas of Chaohu Lake. The density of cyanobacteria reached its maximum in summer and autumn, accompanied by moderate and severe degrees of algal bloom outbreaks. ② During the non-outbreak period, the variation in the cyanobacteria density was greatly affected by physical and chemical factors, which explained 80.3% of the variance in the change in cyanobacteria density. The high concentrations of dissolved oxygen content in the water column and the weak alkalinity (7.2-7.6) and appropriate water temperature (about 3℃) provided a favorable environmental condition for the breeding and growth of cyanobacteria. In addition, the onset of algal blooms was closely related to the air temperature steadily passing through the threshold. According to the statistics, the date of first outbreak of algal blooms in Chaohu Lake was 11 days or so after the air temperature steadily remained above 7℃. ③ During the outbreak period, the occurrence of algal blooms was influenced by the combination of cyanobacterial biomass and meteorological conditions such as temperature, wind speed, and sunshine duration. The cumulative contribution ratio of the four factors was as high as 95%, and each factor had an optimal interval conductive to the outbreak of algal blooms. Furthermore, the results of multi-factor interaction analysis indicated a larger probability of the outbreak of algal blooms in Chaohu Lake under the combined effect of high cyanobacteria density, suitable temperature, and the breeze. This study analyzed and revealed the spatiotemporal characteristics and the dominant influencing factors of algal blooms in Chaohu Lake at different stages, which could provide the scientific basis for the prediction, early warning, and disposal of algal blooms under the context of climate change.


Assuntos
Cianobactérias , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Eutrofização , Proliferação Nociva de Algas , Vento , Água , China
2.
Mar Environ Res ; 197: 106479, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583357

RESUMO

Tropical seascapes rely on the feedback relationships among mangrove forests, seagrass meadows, and coral reefs, as they mutually facilitate and enhance each other's functionality. Biogeochemical fluxes link tropical coastal habitats by exchanging material flows and energy through various natural processes that determine the conditions for life and ecosystem functioning. However, little is known about the seascape-scale implications of anthropogenic disruptions to these linkages. Despite the limited number of integrated empirical studies available (with only 11 out of 81 selected studies focusing on the integrated dynamics of mangroves, seagrass, and corals), this review emphasizes the importance of biogeochemical fluxes for ecosystem connectivity in tropical seascapes. It identifies four primary anthropogenic influences that can disturb these fluxes-nutrient enrichment, chemical pollution, microbial pollution, and solid waste accumulation-resulting in eutrophication, increased disease incidence, toxicity, and disruptions to water carbonate chemistry. This review also highlights significant knowledge gaps in our understanding of biogeochemical fluxes and ecosystem responses to perturbations in tropical seascapes. Addressing these knowledge gaps is crucial for developing practical strategies to conserve and manage connected seascapes effectively. Integrated research is needed to shed light on the complex interactions and feedback mechanisms within these ecosystems, providing valuable insights for conservation and management practices.


Assuntos
Antozoários , Ecossistema , Animais , Humanos , Recifes de Corais , Áreas Alagadas , Eutrofização
3.
Proc Natl Acad Sci U S A ; 121(17): e2321303121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38640342

RESUMO

Understanding the transient dynamics of interlinked social-ecological systems (SES) is imperative for assessing sustainability in the Anthropocene. However, how to identify critical transitions in real-world SES remains a formidable challenge. In this study, we present an evolutionary framework to characterize these dynamics over an extended historical timeline. Our approach leverages multidecadal rates of change in socioeconomic data, paleoenvironmental, and cutting-edge sedimentary ancient DNA records from China's Yangtze River Delta, one of the most densely populated and intensively modified landscapes on Earth. Our analysis reveals two significant social-ecological transitions characterized by contrasting interactions and feedback spanning several centuries. Initially, the regional SES exhibited a loosely connected and ecologically sustainable regime. Nevertheless, starting in the 1950s, an increasingly interconnected regime emerged, ultimately resulting in the crossing of tipping points and an unprecedented acceleration in soil erosion, water eutrophication, and ecosystem degradation. Remarkably, the second transition occurring around the 2000s, featured a notable decoupling of socioeconomic development from ecoenvironmental degradation. This decoupling phenomenon signifies a more desirable reconfiguration of the regional SES, furnishing essential insights not only for the Yangtze River Basin but also for regions worldwide grappling with similar sustainability challenges. Our extensive multidecadal empirical investigation underscores the value of coevolutionary approaches in understanding and addressing social-ecological system dynamics.


Assuntos
Ecossistema , Rios , Eutrofização , Conservação dos Recursos Naturais/métodos
4.
Sci Total Environ ; 926: 171934, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527536

RESUMO

Climate change can significantly alter phytoplankton growth and proliferation, which would counteract restoration efforts to control algal blooms. However, the knowledge is limited about the quantitative evaluation of the causal effect of algal biomass resurgence in large shallow lakes where there is no significant improvement after long term lake restoration. Here, a bucket process-based phytoplankton dynamic model is developed to quantify the contributions of climate change and nutrients concentration changes to phytoplankton biomass resurgence after 2014 in hypereutrophic Lake Taihu, China. Compared to 2008-2014, the mean water temperature (WT) and the mean phosphate are higher, the mean photosynthetically active radiation (PAR), the mean total suspended solids (TSS), and the mean dissolved inorganic nitrogen (DIN) are lower, during 2015-2020. Their contribution to algal biomass resurgence during 2015-2020 is WT (+58.7 %), PAR (-2.6 %), TSS (+23.2 %), DIN (-22.1 %) and phosphate (+42.7 %), respectively. Climate change (WT, PAR, and TSS), which contributed +64.9 % to the phytoplankton biomass resurgence, underscores the urgent need to continuously take more effective measures to reduce nutrient emissions to offset the effects of climate change in Lake Taihu and in other eutrophic lakes.


Assuntos
Mudança Climática , Lagos , Biomassa , Monitoramento Ambiental , Fitoplâncton , Eutrofização , China , Fosfatos , Nitrogênio , Fósforo/análise
5.
Sci Total Environ ; 926: 172009, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547972

RESUMO

Algal blooms have been increasingly prevalent in recent years, especially in lakes and reservoirs; their accurate prediction is essential for preserving water quality. In this study, the observed chlorophyll a (chl-a) levels were assimilated into the Environmental Fluid Dynamics Code (EFDC) of algal bloom dynamics by using a particle filter (PF), and the state variables of water quality and model parameters were simultaneously updated to achieve enhanced algal bloom predictive performance. The developed data assimilation system for algal blooms was applied to Xiangxi Bay (XXB) in the Three Gorges Reservoir (TGR). The results show that the ensemble mean accuracy and reliability of the confidence intervals of the predicted state variables, including chl-a and indirectly updated phosphate (PO4), ammonium (NH4), and nitrate (NO3) levels, were considerably improved after PF assimilation. Thus, PF assimilation is an effective tool for the dynamic correction of parameters to represent their inherent variations. Increased assimilation frequency can effectively suppress the accumulation of model errors; therefore, the use of high-frequency water quality data for assimilation is recommended to ensure more accurate and reliable algal bloom prediction.


Assuntos
Eutrofização , Rios , Clorofila A , Reprodutibilidade dos Testes , Qualidade da Água , China , Monitoramento Ambiental
6.
Sci Total Environ ; 924: 171730, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38492603

RESUMO

Eutrophication and its resulting harmful algal blooms greatly reduce the ecosystem services of natural waters. The use of modified clay materials to assist the phytoremediation of eutrophic water is a promising technique. In this study, ferric chloride and calcium hydroxide were respectively loaded on red soil for algal flocculation and phosphorus inactivation. A two-by-two factorial mesocosm experiment with and without the application of ferric- and calcium- loaded red soil (FA), and with and without planting the submerged macrophyte Vallisneria natans was conducted for the in-situ repair of eutrophic water and sediment. Furthermore, field enclosure application was carried out to verify the feasibility of the technology. At the end of the mesocosm experiment, the total phosphorus, total nitrogen, and ammonia nitrogen concentrations in water were reduced by 81.8 %, 63.3 %, and 62.0 %, respectively, and orthophosphate phosphorus concentration in the sediment-water interface decreased by 90.2 % in the FA + V. natans group compared with those in the control group. The concentration and proportion of chlorophyll-a in cyanobacteria decreased by 89.8 % and 71.2 %, respectively, in the FA + V. natans group. The content of active phosphorus in V. natans decreased and that of inert phosphorus increased in the FA + V. natans group, compared with those in the V. natans alone group, thus may reducing the risk of phosphorus release after decomposing of V. natans. The sediment bacterial diversity index did not change significantly among treatments. Field enclosure application have also been successful, with chlorophyll-a concentration in the water of treated enclosure decreased from above 200 µg/L to below 10 µg/L, and phosphorus concentration in the water decreased from >0.6 mg/L to <0.02 mg/L. These results demonstrated that the FA in combination with submerged macrophyte planting had great potential for the in-situ remediation of eutrophic water, especially those with severe algal blooms.


Assuntos
Ecossistema , Lagos , Cálcio , Solo , Eutrofização , Proliferação Nociva de Algas , Água , Clorofila , Clorofila A , Ferro , Ferro da Dieta , Fósforo , Nitrogênio/análise
7.
J Environ Manage ; 357: 120707, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554455

RESUMO

Water diversion has been widely utilized to enhance lake water quality and mitigate cyanobacterial blooms. However, previous studies have mainly focused on investigating the effects of water diversion on water quality or aquatic ecological health. Consequently, there is limited research investigating the combined impact of water diversion on the water quality and the ecological health of eutrophic lakes, and whether the WQI and phytoplankton assemblages demonstrate similar patterns following water diversion. In this study, the effects of water diversion on the ecosystem health of eutrophic lakes were comprehensively evaluated based on the WQI indices and phytoplankton assemblages during the NWDP-21 and WDP-22. The results showed that the annual mean of WQI increased from 52.02 to 54.36 after water diversion, which improved the water quality of the lake, especially NH3-N and TN decreased by 58.6% and 15.2%, respectively. The phytoplankton assemblages changed significantly before and after water diversion, and we observed that the total biomass of phytoplankton decreased by 12.3% and phytoplankton diversity indices (Shannon-Wiener diversity, Pielou evenness, and Simpson index) increased by 8.6%-8.9% after water diversion, with an improvement in the connectivity and stability of the phytoplankton. Notably, enhanced adaptations of rare sub-communities for resource use in water diversion environments, and water diversion inhibited the dispersal ability of dominant functional groups, and the effects of hydrological disturbances on the structure of phytoplankton assemblage favored the ecological health of eutrophic lakes. VPA analysis further reveals that water diversion alters the drivers of phytoplankton functional group biomass and phytoplankton diversity. The results of the PLS-PM analysis clarify that water diversion indirectly impacts the total phytoplankton biomass and phytoplankton diversity primarily by modifying light availability. Significant correlations are observed between the dominant functional groups biomass and diversity indices of WQI. The trends in changes observed in water quality indices and phytoplankton following water diversion align with the evaluation of water ecological health. This study provides valuable guidance for the ecological management of the diversion project in Yilong Lake and serves as a reference for similar projects in other lakes.


Assuntos
Fitoplâncton , Qualidade da Água , Lagos/química , Ecossistema , Eutrofização , China
8.
Huan Jing Ke Xue ; 45(3): 1539-1552, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471868

RESUMO

The global occurrences of lake eutrophication have led to algal bloom and the subsequent algal decomposition, releasing high amounts of algae-derived dissolved organic matter (DOM) into the lake water. Algae-derived DOM could regulate the quantity and composition of DOM in lake water and further impact the biogeochemical cycles of multiple elements. In this study, the dynamic changes in the quantity and quality of DOM during algal decomposition under different eutrophic scenarios (e.g., from oligotrophication to severe eutrophication) were monitored, and the corresponding environmental effects (e.g., microbial responses and greenhouse gas emissions) caused by algal decomposition were further explored. The results showed that algal decomposition significantly increased the DOM levels, bioavailability, and intensities of fluorescent components in the water. The total DOM levels gradually decreased, whereas the average molecular weight increased along the decomposition process. Furthermore, unsaturated hydrocarbon and aliphatic compounds were preferentially utilized by microorganisms during algal decomposition, and some refractory molecules (e.g., lignin, condensed hydrocarbons, and tannin with high O/C values) were synchronously generated, as evidenced by the results from ultra-high-resolution mass spectrometry. The dominant bacterial species during algal decomposition shifted from Proteobacteria (46%) to Bacteroidetes (42%). In addition, algae addition resulted in 1.2-5 times the emissions of CO2 and CH4 from water, and the emission rates could be well predicted by the optical index of a254 in water. This study provides comprehensive perspectives for understanding the environmental behaviors of aquatic DOM and further paves the ways for the mitigation of lake eutrophication.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Lagos/química , Espectrometria de Massas , Bactérias , Água/análise , Eutrofização , China
9.
J Environ Manage ; 355: 120478, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38432011

RESUMO

Anthropogenic nutrient loading has resulted in eutrophication and habitat degradation within estuaries. Study of eutrophication in estuaries has often focused on larger systems, while there has been increasing interest in understanding the governing processes in smaller systems. In this study, we incorporate both monitoring data and mechanistic modeling to improve our understanding of eutrophication in a small, shallow New England estuary. High-frequency continuous and discrete water quality samples were collected from 2018 to 2020 along a salinity gradient and at varying depth to provide temporal and spatial resolution of the system. Conditions of this estuary were simulated using the Hydrological Simulation Program - FORTRAN (HSPF) and the Water Quality Analysis Simulation Program (WASP) to develop a mechanistic, numerical fate and transport model. Our findings suggest complex hydrodynamics with three distinct salinity gradients and variability in salinity concentration upstream. Simulated and observed nutrient trends demonstrated decreasing total nitrogen concentration moving downstream and low total phosphorus concentration throughout the system. Simulated nutrient depletion and shading via macroalgae suggest their importance in similar modeling initiatives. Dynamic spatiotemporal variability in dissolved oxygen concentrations ([DO]) resulted from hydrodynamic and ecological processes such as large, rapid swings in phytoplankton. Carbonaceous biological oxygen demand was suggested to be the driver of hypoxia in surface waters, while sediment oxygen demand may drive low [DO] in the stratified, benthic waters. These findings suggest that the coordination of monitoring and modeling was important to understanding the governing mechanisms of eutrophication and hypoxia. Insights from this study could be used to support regional management strategies to increase [DO], improve water clarity, and recover indigenous seagrass beds. This work has the potential to inform future study and management of small, complex estuaries.


Assuntos
Estuários , Qualidade da Água , Humanos , New England , Eutrofização , Hipóxia , Monitoramento Ambiental/métodos
10.
J Environ Manage ; 355: 120551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460331

RESUMO

Algal blooms contribute to water quality degradation, unpleasant odors, taste issues, and the presence of harmful substances in artificially constructed weirs. Mitigating these adverse effects through effective algal bloom management requires identifying the contributing factors and predicting algal concentrations. This study focused on the upstream region of the Seungchon Weir in Korea, which is characterized by elevated levels of total nitrogen and phosphorus due to a significant influx of water from a sewage treatment plant. We employed four distinct machine learning models to predict chlorophyll-a (Chl-a) concentrations and identified the influential variables linked to local algal bloom events. The gradient boosting model enabled an in-depth exploration of the intricate relationships between algal occurrence and water quality parameters, enabling accurate identification of the causal factors. The models identified the discharge flow rate (D-Flow) and water temperature as the primary determinants of Chl-a levels, with feature importance values of 0.236 and 0.212, respectively. Enhanced model precision was achieved by utilizing daily average D-Flow values, with model accuracy and significance of the D-Flow amplifying as the temporal span of daily averaging increased. Elevated Chl-a concentrations correlated with diminished D-Flow and temperature, highlighting the pivotal role of D-Flow in regulating Chl-a concentration. This trend can be attributed to the constrained discharge of the Seungchon Weir during winter. Calculating the requisite D-Flow to maintain a desirable Chl-a concentration of up to 20 mg/m3 across varying temperatures revealed an escalating demand for D-Flow with rising temperatures. Specific D-Flow ranges, corresponding to each season and temperature condition, were identified as particularly influential on Chl-a concentration. Thus, optimizing Chl-a reduction can be achieved by strategically increasing D-Flow within these specified ranges for each season and temperature variation. This study highlights the importance of maintaining sufficient D-Flow levels to mitigate algal proliferation within river systems featuring weirs.


Assuntos
Monitoramento Ambiental , Rios , Temperatura , Clorofila A , Clorofila/análise , Qualidade da Água , Eutrofização , Nitrogênio/análise , Fósforo/análise , China
11.
Ying Yong Sheng Tai Xue Bao ; 35(2): 523-532, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523111

RESUMO

Dissolved oxygen (DO) is an important index to evaluate the quality of surface water environments. In recent years, anomalies in DO level have emerged as a major contributor to the decline of surface water quality. These anomalies have triggered several ecological and environmental challenges such as biodiversity loss, the degradation of water environmental quality, intensification of eutrophication, and an exacerbation of the greenhouse effect. Understanding the mechanisms underlying DO anomalies and devising targeted remediation strategies holds paramount importance in the scientific pursuit of water pollution control and aquatic ecosystem restoration. We explored and summarized the fluctuations and abnormal mechanism of DO concentration in surface water, focusing on factors like oxygen solubility, reoxygenation rates, and oxygen consumption by water bodies. We compiled a range of approaches for addressing DO anomalies, including pollution source management, artificial oxygenation, and the reconfiguration of aquatic ecosystems. Ultimately, we underscored the emerging significance of monitoring and regulating DO level in surface waters. Future research in this realm should encompass the establishment of distinct quality standards for surface water, the development of a comprehensive real-time spatial monitoring system for DO levels across watersheds, and the formulation of standardized procedures and technical norms.


Assuntos
Ecossistema , Oxigênio , Qualidade da Água , Biodiversidade , Eutrofização , Monitoramento Ambiental
12.
Chemosphere ; 353: 141577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430937

RESUMO

Pollution in aquatic ecosystems has been increasing drastically worldwide changing their water quality. Therefore, species must be adapted to these new scenarios. In Aguascalientes City, four representative urban reservoirs contain lead in the water column and extremely high concentrations of sediments. Therefore, an analysis was conducted to evaluate the resilience of zooplankton species to lead exposure in each reservoir using dormant and organisms. Results demonstrated a decrease range from 57.5 to 22.5% in overall diapausing egg hatching rate, while survivorship rate also decreased from 98 to 54% when organisms were exposed to the water of the four reservoirs and increasing lead concentrations. When Pb exposure increased, results showed a global negative effect on both hatching rate (decreasing from 58 to 30% at 0.09 mg L-1) and survivorship levels (decreasing from 100% to 0.07% at 0.09 mg L-1). We provide Species Sensitivity Distribution for both water reservoir dilutions and lead concentration to analyze diapausing eggs hatching and survivorship of offspring in the presence of same polluted conditions or lead of the autochthonous species found in reservoirs. Furthermore, specific analysis with two populations of the cladoceran Moina macrocopa showed clear dissimilar hatching patterns that suggested a different adaptive mechanism. Niagara population shows a hatching rate of approximately 25% in the first two days of reservoir water exposure, while UAA population drastically increased hatching rate to 75% on exposure at day seven. We provide the first record of bioaccumulation in ephippia of M. macrocopa.


Assuntos
Cladóceros , Resiliência Psicológica , Rotíferos , Poluentes Químicos da Água , Animais , Chumbo/toxicidade , Ecossistema , México , Poluentes Químicos da Água/toxicidade , Eutrofização , Zooplâncton
13.
Sci Total Environ ; 923: 171487, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447717

RESUMO

The nitrogen (N) removal characteristics in water columns and sediments of shallow lakes, influenced by various factors, may exhibit spatial variations in lakes with algal-macrophyte dominance. The N removal rates in water columns and sediments of Lake Taihu were investigated. Our findings indicated that the total N removal rates in Lake Taihu followed the order of algae-dominance > macrophyte-dominance > pelagic lake (without the presence of algae and macrophytes). Correlation analysis revealed that the key environmental factors affecting denitrification and anammox in sediments of algae/macrophyte-type lakes were nitrate nitrogen (NO3--N), nitrite nitrogen (NO2--N), ammonia nitrogen (NH4+-N), and chlorophyll a (Chl-a). The linear regression demonstrated that a significant correlation between the denitrification and the anammox in sediments, with a correlation coefficient of 0.81 (p < 0.01). The contributions to N removal from the water columns and sediments in Lake Taihu were 53 % and 47 %, respectively. Denitrification predominantly drove N removal from sediments, whereas anammox dominated the N removal in water columns. Thus, N removal from the water columns is nonnegligible in shallow eutrophic lakes. This study enhances our understanding of N biogeochemical cycling dynamics in sediment-water and algae/macrophyte ecosystems across various shallow eutrophic lake regions.


Assuntos
Desnitrificação , Lagos , Lagos/análise , Clorofila A , Água/análise , Nitrogênio/análise , Ecossistema , Sedimentos Geológicos , China , Eutrofização
14.
Chemosphere ; 353: 141655, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460851

RESUMO

This study explored the feasibility of calcium peroxide (CaO2) to inhibit cyanobacterial blooms of the outbreak and dormancy stages. Our previous studies have found that CaO2 has a high inhibitory effect on cyanobacteria. In order to explore the application effect of CaO2 in actual cyanobacteria lake water, we conducted this study to clarify the effect of CaO2 on inhibiting cyanobacteria in outbreak and dormancy stages. The results showed that CaO2 inhibited the growth of cyanobacteria in the outbreak and dormancy stages by 98.7% and 97.6%, respectively. The main inhibitory mechanism is: (1) destroy the cell structure and make the cells undergo programmed cell death by stimulating the oxidation balance of cyanobacteria cells; (2) EPS released by cyanobacteria resist stimulation and combine calcium to form colonies, and accelerate cell settlement. In addition to causing direct damage to cyanobacteria, CaO2 can also improve water quality and sediment microbial diversity, and reduce the release of sediment to phosphorus, so as to further contribute to cyanobacterial inhibition. Finally, the results of qRT-PCR analysis confirmed the promoting effect of CaO2 on the downregulation of photosynthesis-related genes (rbcL and psaB), microcystn (mcyA and mcyD) and peroxiredoxin (prx), and verified the mechanism of CaO2 inhibition of cyanobacteria. In conclusion, this study provides new findings for the future suppression of cyanobacterial bloom, by combining water quality, cyanobacterial inhibition mechanisms, and sediment microbial diversity.


Assuntos
Cianobactérias , Microbiota , Qualidade da Água , Lagos/microbiologia , Fósforo/farmacologia , Fósforo/análise , Eutrofização
15.
Environ Sci Pollut Res Int ; 31(17): 26123-26140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492146

RESUMO

As an essential drinking water source and one of the largest eutrophic shallow lakes in China, the management of Lake Taihu requires an adequate understanding of its hydrodynamic characteristics. Studying the hydrodynamic characteristics of Lake Taihu based on field observations is limited owing to its large area and the lack of flow field stability. Previous studies using hydrodynamic models experienced challenges, such as dimensionality and lack of dynamic response analysis between flow field and realistic wind; therefore, the results were still inconclusive. In this study, a 3D model of Lake Taihu, calibrated and validated based on field observations, was used to simulate and compare three scenarios: windless, steady wind, and realistic wind. The hydrodynamic characteristics of Lake Taihu were analyzed as close to the actual conditions as possible. The results showed that wind-driven currents dominated the flow field in Lake Taihu, and the horizontal velocity driven by wind was more than 6 times that without wind. Observing a stable flow field in Lake Taihu was difficult because of the variability of realistic wind. The hydrodynamic characteristics of Lake Taihu were defined as "strongly affected by wind," "higher on the surface and smaller at the bottom," and "difference between the surface and the bottom." Vertical turbulent kinetic energy can be used to characterize the variable flow field of a wind-driven lake and has a positive correlation with wind speed. Therefore, it could be used as a key component to predict water blooms with practical implications.


Assuntos
Monitoramento Ambiental , Lagos , Vento , Hidrodinâmica , Eutrofização , China
16.
Sci Rep ; 14(1): 7240, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538671

RESUMO

A key control on the magnitude of coastal eutrophication is the degree to which currents quickly transport nitrogen derived from human sources away from the coast to the open ocean before eutrophication develops. In the Southern California Bight (SCB), an upwelling-dominated eastern boundary current ecosystem, anthropogenic nitrogen inputs increase algal productivity and cause subsurface acidification and oxygen (O 2 ) loss along the coast. However, the extent of anthropogenic influence on eutrophication beyond the coastal band, and the physical transport mechanisms and biogeochemical processes responsible for these effects are still poorly understood. Here, we use a submesoscale-resolving numerical model to document the detailed biogeochemical mass balance of nitrogen, carbon and oxygen, their physical transport, and effects on offshore habitats. Despite management of terrestrial nutrients that has occurred in the region over the last 20 years, coastal eutrophication continues to persist. The input of anthropogenic nutrients promote an increase in productivity, remineralization and respiration offshore, with recurrent O 2 loss and pH decline in a region located 30-90 km from the mainland. During 2013 to 2017, the spatially averaged 5-year loss rate across the Bight was 1.3 mmol m - 3 O 2 , with some locations losing on average up to 14.2 mmol m - 3 O 2 . The magnitude of loss is greater than model uncertainty assessed from data-model comparisons and from quantification of intrinsic variability. This phenomenon persists for 4 to 6 months of the year over an area of 278,40 km 2 ( ∼ 30% of SCB area). These recurrent features of acidification and oxygen loss are associated with cross-shore transport of nutrients by eddies and plankton biomass and their accumulation and retention within persistent eddies offshore within the SCB.


Assuntos
Ecossistema , Eutrofização , Humanos , Plâncton , Nitrogênio , Oxigênio
17.
Mar Environ Res ; 197: 106446, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518406

RESUMO

Rapid technological development in agriculture and fast urbanization have increased nutrient losses in Europe. High nutrient export to seas causes coastal eutrophication and harmful algal blooms. This study aims to assess the river exports of nitrogen (N) and phosphorus (P), and identify required reductions to avoid coastal eutrophication in Europe under global change. We modelled nutrient export by 594 rivers in 2050 for a baseline scenario using the new MARINA-Nutrients model for Europe. Nutrient export to European seas is expected to increase by 13-28% under global change. Manure and fertilizers together contribute to river export of N by 35% in 2050. Sewage systems are responsible for 70% of future P export by rivers. By 2050, the top ten polluted rivers for N and P host 42% of the European population. Avoiding future coastal eutrophication requires over 47% less N and up to 77% less P exports by these polluted rivers.


Assuntos
Monitoramento Ambiental , Eutrofização , Oceanos e Mares , Rios , Proliferação Nociva de Algas , Nitrogênio/análise , Fósforo/análise , Europa (Continente) , Nutrientes
18.
Environ Sci Pollut Res Int ; 31(17): 25147-25162, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38468006

RESUMO

The comparative study of the transformation among sediment phosphorus (P) fractions in different lake types is a global issue in lake ecosystems. However, interactions between sediment P fractions, environmental factors, and microorganisms vary with the nutrient status of lakes. In this study, we combine sequential extraction and metagenomics sequencing to assess the characteristics of P fractions and transformation in sediments from different lake types in the Inner Mongolian section of the Yellow River Basin. We then further explore the response of relevant microbial and environmental drivers to P fraction transformation and bioavailability in sediments. The sediments of all three lakes exhibited strong exogenous pollution input characteristics, and higher nutritional conditions led to enhanced sediment P fraction transformation ability. The transformation capacity of the sediment P fractions also differed among the different lake types at the same latitudes, which is affected by many factors such as lake environmental factors and microorganisms. Different drivers reflected the mutual control of weakly adsorbed phosphorus (WA-P), potential active phosphorus (PA-P), Fe/Al-bound phosphorus (NaOH-P), and Ca-bound phosphorus (HCl-P) with the bio-directly available phosphorus (Bio-P). The transformation of NaOH-P in reducing environments can improve P bioavailability, while HCl-P is not easily bioavailable in weakly alkaline environments. There were significant differences in the bacterial community diversity and composition between the different lake types at the same latitude (p < 0.05), and the role of P fractions was stronger in the sediments of lakes with rich biodiversity than in poor biodiversity. Lake eutrophication recovery was somewhat hindered by the microbial interactions of P cycling and P fractions within the sediment. This study provides data and theoretical support for exploring the commonalities and differences among different lake types in the Inner Mongolian section of the Yellow River Basin. Besides, it is representative and typical for promoting the optimization of ecological security patterns in ecologically fragile watersheds.


Assuntos
Lagos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Ecossistema , Fósforo/análise , Congelamento , Hidróxido de Sódio , Monitoramento Ambiental , Sedimentos Geológicos , Eutrofização , China
19.
Mar Pollut Bull ; 201: 116233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457878

RESUMO

Green tides, a globally prevalent marine ecological anomaly observed in coastal regions, have received substantial attention. However, there is limited research on the burial of Ulva prolifera in sediments during the late stages of green tide outbreaks. This study investigates the effect of temperature on U. prolifera buried in sediment over 30 days. The measurements included the length, biomass, relative growth rate, chlorophyll composition and maximum quantum yield (Fv/Fm) of PS II at different stages. The results indicate that at -20 °C, numerous seedlings emerged after 14 days of recovery culture, suggesting the release of spores or gametes; survival was possible from -2 °C to 15 °C; but at 20 °C and 30 °C, all U. prolifera died. The U. prolifera buried in sediment during the late stage of green tide outbreaks may serve as one of the sources for the subsequent year's green tide eruption. This research provides insights into the origins of green tide outbreaks in the southern Yellow Sea.


Assuntos
60578 , Eutrofização , Ulva , Temperatura , Biomassa , China
20.
Sci Total Environ ; 924: 171621, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38467252

RESUMO

A positive feedback loop where climate warming enhances eutrophication and its manifestations (e.g., cyanobacterial blooms) has been recently highlighted, but its consequences for biodiversity and ecosystem functioning are not fully understood. We conducted a highly replicated indoor experiment with a species-rich subtropical freshwater phytoplankton community. The experiment tested the effects of three constant temperature scenarios (17, 20, and 23 °C) under high-nutrient supply conditions on community composition and proxies of ecosystem functioning, namely resource use efficiency (RUE) and CO2 fluxes. After 32 days, warming reduced species richness and promoted different community trajectories leading to a dominance by green algae in the intermediate temperature and by cyanobacteria in the highest temperature treatments. Warming promoted primary production, with a 10-fold increase in the mean biomass of green algae and cyanobacteria. The maximum RUE occurred under the warmest treatment. All treatments showed net CO2 influx, but the magnitude of influx decreased with warming. We experimentally demonstrated direct effects of warming on phytoplankton species sorting, with negative effects on diversity and direct positive effects on cyanobacteria, which could lead to potential changes in ecosystem functioning. Our results suggest potential positive feedback between the phytoplankton blooms and warming, via lower net CO2 sequestration in cyanobacteria-dominated, warmer systems, and add empirical evidence to the need for decreasing the likelihood of cyanobacterial dominance.


Assuntos
Clorófitas , Cianobactérias , Fitoplâncton , Ecossistema , Dióxido de Carbono , Biomassa , Eutrofização , Lagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...